Fourier… 2

Let me resume the Fourier thing.

Back and forth transform pair are:

\displaystyle f(x) = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega,

\displaystyle \hat{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx.

Since I was concerning about solving ODE using Fourier transform in a similar manner as Lapalce’s, I want to see what the Fourier transform of derivatives (with respect to x) of f(x) look like.  For the 1st derivative, I get:

\displaystyle\hat{f\prime}(\omega) = \int_{-\infty}^{\infty} f\prime(x) e^{-i\omega x} dx = [f(x) e^{-i\omega x}]_{-\infty}^{\infty} -\int_{-\infty}^{\infty} f(x) (e^{-i\omega x})\prime dx.

by using integration by parts.  If f(x) vanishes at infinity (\lim_{x \to \pm \infty}f(x) = 0), then the 1st term becomes 0, so I get:

\displaystyle\hat{f\prime}(\omega) = -\int_{-\infty}^{\infty} f(x) (e^{-i\omega x})\prime dx = i\omega \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx = i\omega \hat{f}(\omega)

Now higher derivatives are easy.  Fourier transform of the 2nd derivative, for example, is:

\displaystyle \hat{f\prime\prime}(\omega) = -\omega^2 \hat{f}(\omega).

Okay.  Let me pick a 2nd order ODE:

\displaystyle u\prime\prime(x) + au\prime(x) + bu(x) = v(x).

Taking Fourier transform of both sides, I get:

\displaystyle -\omega^2 \hat{u} + i a \omega \hat{u} + b\hat{u} = \hat{v},

\displaystyle \hat{u}(\omega) = \dfrac{\hat{v}(\omega)}{-\omega^2 + i a \omega + b}.

Finally I reach f(x) by inverse-transforming both sides:

\displaystyle u(x) = \dfrac{1}{2\pi}\int_{-\infty}^{\infty} \dfrac{\hat{v}(\omega)}{-\omega^2 + i a \omega + b} e^{i\omega x} d\omega.

mmm… but is the integral on the right hand side looks so clumsy…  It is a double-integral actually.

About azumih

Computer Programmer
This entry was posted in Differential Equations and tagged , . Bookmark the permalink.

2 Responses to Fourier… 2

  1. Pingback: Fourier… 3 | 0909

  2. Pingback: Answering my own question on the Fourier Series | cartesian product

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s